

PLTW COMPUTER SCIENCE

Activity 1.1.1

Getting Started with Block-based
Programming: Digital Doodle

goals

• Preview Computer Science Essentials

• Learn block-based programming

• Get started with MIT App Inventor

• Develop an app independently for creative expression

App description

Interactive video is available in app.

Create an app that allows the user to take a picture and then draw on the picture in the

user interface.

Essential Questions

 Why is it important to become a creator and not just a user?

 How does block-based programming make life easier when coding?

 Why are independent and cooperative strategies so important in computer

science?

essential Concepts

 Programming Language Abstraction

 User-centered Design

 Iterative Design and Debugging

 Event-driven Programming

Resources

Independent and Cooperative Strategies

Computer Science Practices

PLTW Computer Science Notebook

App Inventor Debugging Guide

1.1.1 Challenge: Additional App Features

Digital Doodle app icon

Getting Started with MIT App Inventor

Design Overview: Digital Doodle

App OverviewYou are going to create an app that allows a user to take a picture and then

draw on that picture. For replay value, the device screen will clear whenever a user shakes the

device. Each of these items is called an app feature, because it describes a specific thing that

the app may do. An abbreviated tutorial for this app and many others can be found at the MIT

App Inventor website.

User Story Each feature in an app can be described as a user story. User stories define and

prioritize the work you do. The user stories for the Digital Doodle app include three user

interactions:

• An app event that allows a user to take a picture when they touch a button.

• Another event that allows a user to touch the screen (swipe gesture as input) to draw on the

picture.

• A final app event that allows the shaking of the device to clear all the outputs (the drawing

the user made on the picture).

Initial Backlog BreakdownThe user needs to be able to:

• Push a button to take a picture

• Draw on the picture

• Clear the picture

• Change the color they draw with (if time permits)

• Change the line width (if time permits)

Design Terminology

User Story

Each of the app features is a user story. User stories
are the individual items that make up the whole solution
or app. Developers make a plan for development that
prioritizes and individually addresses each user story’s
need. With each feature you add, it is important to test
and get feedback from other users on how your idea or
solution is working. Sometimes new user stories will
emerge as people think of new things they want the app to
do. All these features need to be visible to the user in
the user interface.

User Centered

When you are developing an app, or any software solution,
it is important to think about the people who will be
using that software. If the design and development of a
software solution is not user centered, then the app may
not be used by the intended audience.

User Interface

A user interface is what the user interacts with on the
device. It can include the touch screen, buttons, and
even an accelerometer that senses and sends the
orientation of the device. The user interface sends
messages to the operating system to indicate what to do
next based on what it senses from the user. As you design
apps, you will create many types of user interfaces to
meet different user story needs.

 PLTW COMPUTER SCIENCE NOTEBOOK -Design TerminologyAs you progress, take

note of the vocabulary words using a TEMP Chart (Term, Example, Meaning, Picture). As you

come across additional key terms, add them to your TEMP chart. Review an example TEMP

chart on the PLTW Computer Science Notebook page.

Add the words in the previous Design Terminology section into a TEMP chart.

Setting Up the Account and Project

Access MIT App Inventor in a web browser on your computer.

a. Navigate to https://accounts.google.com and log in to your Google account.

b. Navigate to MIT App Inventor at http://appinventor.mit.edu/explore/

c. Click the button that says Create apps! and allow login with your Google

username and password.

d. Bookmark the MIT App Inventor website on your computer as directed by your

teacher. Because you will access this site every class for the next few weeks, this

will save you some time at the start of class.

e. On your Android™ device, check to see whether the AI2 app is installed. If not,

navigate to the Google Play Store at http://appinv.us/companion and download

the AI2 Companion App.

After App Inventor is open in the web browser, select Start new project. Name the

project as directed by your teacher.

My Projects Menu

Designer View and Blocks View

There are two types of views in App Inventor:

Designer view, where you can create the user interface and add common features you

want in the app. This is where you let the program know what components you will later

want to code.

• Blocks view, where you can program the features you added in the Designer view. To open

the Blocks view, click Blocks in the upper-right corner of the window.

While you develop apps, you will switch between the views. To know which interface to work

in, think to yourself:

Interactive flashcard is available
in app.

Interactive flashcard is available
in app.

 PLTW Computer Science Notebook -ViewsAdd the two types of views to your TEMP

chart.

Components in Designer View

Within the Designer Palette, you will find drawers with many different components in them.

Designer View

A component is a tidy package of functionality for an input or output. Components are in the

Palette on the left side of the Designer view. The Designer Palette has different drawers that

you can open to see components in each category, such as the User Interface drawer or

Sensors drawer.

Toward the right side of the window is a Components list of all the components you have

added to your app from the DesignerPalette. In the Components list, you can select, rename,

or delete the components you want. When you select a component from the list, Properties on

the far right changes to provide options for the component you selected.

Remember from the user story that this app will need the following components:

• Button (to activate the camera)

• Canvas (to draw on)

• Camera (to take the picture)

Error Alert: You need to have these three design components in the Designer

view, so that you can switch to the Blocks view to program the components.

Without the design components in place, you will not see the blocks to make the

program.

Drag the three components onto the user interface of your app from the following

drawers:

a. User Interface drawer: Drag out the Button, which responds with programmed

actions when a user clicks it.

b. Drawing and Animation drawer: Drag out the Canvas, which provides a touch-

sensitive surface where a user can draw and interact.

c. Media drawer: Drag out the Camera, which accesses the device’s camera. The

camera is a non-visible component, so it will appear at the bottom of the window

when you drag it to the Designer view.

The default Text setting for the Button component is “Text for Button”, which does not

help the user know what the button does.

In the Designer view, select the Button in the Viewer or Components list.

Change the ButtonText property to Take a Picture! Now the user will see text on the

Button that lets them know how to use the interface.

Designer View Updating Properties

Interactive slideshow is available in app.

Event Handlers

In almost all programs you create, you will have inputs or events that cause the program to

take action. These actions usually produce outputs that the user can experience. Events

include actions such as clicking a button, touching a screen, or tilting a device that has an

accelerometer in it. The program might produce an output for the user, such as sound,

graphics, or motor movement. Sometimes the program does not give a noticeable output to

the user, but changes something in the program.

Event handlers look for inputs or events to know when to perform a specific action and

provide specific outputs. Some event handlers are control blocks that are specific to a

component in App Inventor.

Event handlers abstract the details of the structures that enable or disable the control over the

components you drag and drop inside them. Each block inApp Inventor is doing a lot of work

for you behind the scenes. Abstraction keeps you from seeing, and dealing with, the details

you don’t care about (for right now).

In this example, the control block, or event handler, is waiting for an event (Button click) and a

procedure that produces an output (takes a picture).

Event Handler

when: Button1 is clicked (input)do: call Camera1 and TakePicture (output)

Event Handler

Snippet of code showing the event handler for the first feature in the Digital Doodle app. It will

use the input of pressing a button to take a picture.

As a developer, you would waste time writing the same code to take a picture every time you

use that feature in an app. So that code is bundled in a procedure block for repeated use,

without having to recode it each time.

App Inventor abstracts away those details, so you can focus on the app as a whole and use a

camera feature, instead of all the steps needed to make the app take a picture.

Abstraction hides the complexity of a task by concealing the details, making it easier for

computer scientists to focus on the relevant steps of creatively developing code.

Blocks View

While developing in the Blocks view, pay close attention to the event that you want to develop.

To find an event handler, look at the event inside the event handler, then find that event

component in Blocks on the left side of the Blocks view.

To switch to the Blocks view, click Blocks in the upper-right corner.

In the Blocks panel on the left, find the blocks below and drag them out into the

Viewer part of your screen:

Camera Drawer

A block that calls a procedure that lets the user take a picture.

Canvas Drawer

A block that sets the background image of the canvas whenever the event

handler the block is placed in is activated.

Camera Drawer
A block that handles the events after the user takes the picture.

Button Drawer
An event handler that executes the blocks within it whenever Button1 is clicked.

If you cannot find a block described in the procedures:

• Verify that the component is in the Designer Components panel.

• If the component is not in the Designer view, add it in the Designer view then

return to the Blocks view.

• Find the same component in the Blocks view to be able to grab blocks associated

with that specific component.

Drag out the image block from the Camera1.AfterPicture.

a. Move your mouse pointer over the text “image” without clicking.

b. Click the get image block that pops up and drag it out. The image block may only

be used inside the event handler you pulled it from.

Interactive show hide is available in app.

Setting Up Event Handlers

An event handler is a chunk of code that executes (is put into action) when a particular event

occurs. To create an interface with an event handler in MIT App Inventor, drag one or more

blocks into the event handlers.

Look at the “When..., do...” Button.click event handler block.

Each time the event occurs (selecting the button on the screen), the code inside the

do part of the event handler will be performed.

The blocks work like a puzzle. Either the blocks fit together, or you need to revisit how you are

using the blocks to code.

Construct two event handlersfrom the blocks you pulled onto the screen by thinking

through two of the features you want:

a. What event(button) triggers an eventhandler (button click) to make what action

happen (call the camera to take a picture)?

b. After the picture event, the camera should set the Canvas to show the background

as that image from the camera.

Debugging

To test your program, connect to the device with the following steps:

Connect Menu

a. In the MIT App Inventor browser window, select Connect > AI Companion.

b. On the Android device, launch the AI2 Companion app.The browser displays a

six-character code.

c. In the AI2 Companion app, you may connect in two different ways:

i. Companion app, enter the six-character code and select Connect with code.

ii. Alternatively, you can scan the QR code in the Android device’s AI Companion

app.

Your program is working properly, if you can:

 Touch the button as input

 Receive the outputof an image on the screen after you take the picture

Important: Check the boxes as you verify parts of the app are working. As you test, this will

help you know what works and what does not.

If your program is not working properly, start debugging, which means looking at your

code piece by piece to determine why the program is doing something different from

what you intended it to do. Refer to the App Inventor Debugging Guide for reminders

and steps to debug.

App Inventor Debugging Guide

Be patient with yourself, and seek help from those around you if your app is not performing as

expected.

 PLTW Computer Science Notebook - DebuggingTitle a page “Debugging”. Use this page

to record information and tips about debugging your code.

Iteration and Version Control

After testing and debugging, you have a functioning app!

You probably want to keep it that way as you explore adding more features. Saving your

project as a new version (with a new name) will help minimize how much you have to debug or

fix moving forward. Naming is important, because it will help you review previous versions of

your code as you develop toward the final app.

To save your program with a new name, click to open the Projects menu and select

Save project as…

a. As you create these new versions—also known as program iterations, it is

important to name them in a way that will make it easy to find specific features or

code.

b. Discuss naming schemes with your teacher.

Procedures and Arguments

You will set up a callCanvas.Drawline procedureunder the Canvas.Dragged event handler.

In the Canvas drawer, drag out the callCanvas.Drawline and the Canvas.Dragged

event handler into the Blocks Viewer.

The whenCanvas1.Dragged event handler block is designed to automatically get (X,Y)

location information for you to use in your program (both the previous location and

current location when a user drags their finger across the screen). Hover over the

orange arguments in the event handler (as pictured below) to access the get

variable blocks that contain the (X,Y) values. The program can pass the information

about the (X,Y) locations to other parts of the program as arguments/variables by

plugging a get block into the callCanvas1.Drawline procedure.

Event specific arguments
For the app to draw a line, the procedure needs to get the coordinates of the screen.

The app needs to know where the user first touched and where they touch next.

Interactive slideshow is available in app.

These types of blocks will be discussed more later.

Set up the procedure while considering the previous pictures. For help with the setup,

you can read the comments in the figure above, hover your pointer over the event

handler in your program to see an explanation, or read more below.

Interactive show hide is available in app.

Test and debug your app.

a. If you change your app and it no longer works, you may always go back to the

previously saved version.

b. Do an iteration save of your project, if the app allows you to:

 Take a picture

 Draw on the picture

Clear Screen

As you test the app by drawing on it, you may want to clear the screen. It is possible to clear

the canvas when you shake the device using the accelerometer. The accelerometer is a built-

in sensor in some devices that allows the device to sense if and how much the device is tilted

in any direction.

To use the accelerometer in the app:

a. In the Designer view, go to the Palette Sensors drawer and drag in the

AccelerometerSensor component. The AccelerometerSensor is a non-visible

component, so it will show under the app screen in the Viewer, but the user

cannot see it.

b. In the Blocks view, select the AccelerometerSensor drawer and drag out the

AccelerometerSensor.Shaking event handler.

c. In the Blocks view, select the Canvas1drawer. Find and drag out the call

Canvas1.Clear procedure block and place it inside the

AccelerometerSensor.Shaking event handler.

d. Test, debug, and save when the app lets you:

Take a picture

Draw on the screen

Shake the device to clear all the drawings

Add Color

The app needs a little color. You can add buttons that will change the pen color. Now is your

chance to add the colors you think a user may want to draw with.

To add color buttons:

a. In the Designer view, add another button.

b. Select the new button in the Components list. In the Designer Properties of the

button, change the TextColor to the color you want it to be, for example red.

c. In the Blocks view, click the button that you want to be red. Find the

WhenButton.click event handler and drag it out into the screen.

d. Click the Canvas drawer to find the set canvas.PaintColor block and add it to the

event handler.

e. Click the Colors drawer and pull out the color and plug it into the end of the set

block.

f. Test your app:

Take a picture

Draw on the screen

Select different colors to draw on the screen

Draw on the screen

Shake the device to clear all the drawings

App Completion

Review the iterations you have completed with your code.

Interactive slideline is available in app.

When your app is working properly, complete the following as your teacher directs.

a. Share your work.

• Show your MIT App Inventor screen.

• Demonstrate the app on a device using AI Companion.

b. Back up your work.

• To download the MIT App Inventor program you created, select Projects >

Export selected project (.AIA) to my computer.

• To download the Android app, select Build > App (save .APK to my

computer).

c. Share a quick reference image.

• In the Blocks view, right-click on the blank area of the screen.

• In the popup list, select Download Blocks as Images.

• Share the image with your teacher.

Challenge

Challenge yourself by choosing some additional app features.

Conclusion

Why is it important to design incrementally? Consider: During what iteration did

you have a working app? What did you stand to lose and gain with each iteration?

Why do you think computer science professionals included things like

communication, collaborations, and fostering an inclusive computing environment

in the computer science practices?

How did you interpret and respond to the Essential Questions? Capture your

thoughts for future conversations.

Proceed to next activity

App Inventor Debugging Guide

Resources

Steps for Debugging Code

• Explain to an elbow partner where you are in the activity, what you were trying to do,

and what you have already done. Sometimes talking through these steps helps you

discover the problem.

• Read any errors that pop up on the screen. These will lend insight into why the

software cannot complete the program.

• Remove or right-click to disable some blocks to get a basic working code, and then

add blocks back in one at a time to see what is causing the issue.

• Check the names of components in the Designer view to make sure the blocks you

think you are programming are the ones you are actually programming.

Steps for Debugging Code

 Check for hardware or emulator connection issues. You might need to close the

emulator or the MIT AI Companion, reset the connection, and reconnect.

 Check for compilation errors (warnings and error messages in the Blocks view)

and fix them.

 To make sure you understand the intended outcomes of each event handler,

review your comments and algorithms.

 Make sure your code is easy to read. Collapse code that is not related to the

bug.

 Use debugging strategies to isolate the bug.

Do It command

Disable command

Code trace or variable trace

 Test the app.

 Fix the bug.

 Test the app again.

Challenge: Additional App Features

Sample User Interface
Your teacher will direct you about which additional features to add. Review the goals,

designer needs, and what to do to add these features.

To make sure you do not lose progress on a working app as you add new features, use

iterative saves and the naming convention outlined by your teacher.

Challenge A - Pen Size Feature

Goal

Add a slider to adjust the width of the line that draws as you drag your finger on the

touch screen.

Design Needs

• Horizontal arrangement, which lets you adjust where items are placed in comparison

to each other on the screen.

Important: Drag in the horizontal arrangement first so that you can drag the color

buttons directly into the horizontal arrangement, side by side.

• Label component, to identify the pen slider to a user.

• Slider component, to change the value as the user slides a control back and forth.

Do

 The following image shows a slider component beside a label component inside a

Horizontal Arrangement component, as you might see in the Designer view screen.

Important: While you have the horizontal arrangement selected, look under the

Properties on the right of the screen. Where it says “Width”, change that option to Fill

parent to make it go all the way across the screen.

Repeat with the slider to make it a more user friendly inputcontrol.

 Take special note of the argument that the slider.positionChanged event handler

offers.

 What component are you setting up to accept that argument?

 Once it is working, save your project, adding an “A” to the end of the name to

show you completed Challenge A.

Challenge B - Color Change Feature

Goal

Add buttons to change the color of the pen.

Design Needs

 Horizontal arrangement

 Three buttons inside a horizontal arrangement

Horizontal Arrangements

The top block in the figure shows what a horizontal arrangement looks like when you

add it to the Designer view screen. Drag items into the block and watch for the solid

blue line (as shown above) to indicate where the component will be placed inside the

horizontal bar. An example of a completed horizontal arrangement is shown at the

bottom of the image.

Do

• Set the Shape and BackgroundColor properties of each button.

Important: In the Components list of the Designer view, you should rename each

button to a name like ButtonBlue. That helps programmers keep track of the

components.

• Once it is working, save your project, adding a “B” to the end of the name to show

you completed this challenge.

Challenge C - Add a Fourth Button

Goal

Add another button with a custom color.

Design Needs

Another button - be sure to adjust the size, color, and name of the button.
Do

• Add a fourth button, and instead of using a color block, use the blocks in the image.

• To see what colors you can make, change the values of the red (first number), green

(second number), and blue (third number) .

• Once it is working, save your project, adding a “C” to the end of the name to show

you completed this challenge.

Challenge Iterations

Interactive slideline is available in app.

Continue Exploring

Explore the other components and choose one feature to try out in this app. For a list of

components and information about them, check out the App Inventor Component

Reference.

